A New Microtensile Tester for the Study of MEMS Materials with the Aid of Atomic Force Microscopy
نویسندگان
چکیده
An apparatus has been designed and implemented to measure the elastic tensile properties (Young’s modulus and tensile strength) of surface micromachined polysilicon specimens. The tensile specimens are “dog-bone” shaped ending in a large “paddle” for convenient electrostatic or, in the improved apparatus, ultraviolet (UV) light curable adhesive gripping deposited with electrostatically controlled manipulation. The typical test section of the specimens is 400 μm long with 2 μm × 50 μm cross section. The new device supports a nanomechanics method developed in our laboratory to acquire surface topologies of deforming specimens by means of Atomic Force Microscopy (AFM) to determine (fields of) strains via Digital Image Correlation (DIC). With this tool, high strength or non-linearly behaving materials can be tested under different environmental conditions by measuring the strains directly on the surface of the film with nanometer resolution. KEY WORDS—Mechanical properties, microtensile testing, AFM, digital image correlation, MEMS
منابع مشابه
Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملApplication of Scanning Electron and Atomic Force Mode Microscopy on inscription from Proto-Elamite period in Tappeh Sofalin
The study of cultural heritage artifacts and the research of a protection and restoration intervention create with - and are often limited to - a complete characterization of their surface. This is not only factual for museum objects, but also for archaeological artifacts, because the object as it was discovered may contain precious unknown information that could be lost by too much aggressive ...
متن کاملAtomic Force Microscopy Application in Biological Research: A Review Study
Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002